Home
Class 10
MATHS
" 37."(a+b)^(2)x^(2)-4abx-(a-b)^(2)=0...

" 37."(a+b)^(2)x^(2)-4abx-(a-b)^(2)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve by factorization: (a+b)^(2)x^(2)-4abx-(a-b)^(2)=0

Solve the following equation by using the method of factorization: (a+b)^2x^2-4abx-(a-b)^2=0

Without determining the roots of the following equations comment their nature: (i) 6sqrt3x^(2)-4x+sqrt3=0 (ii) 9a^(2)b^(2)x^(2)-48abcdx+64c^(2)d^(2)=0 (iii) a^(2)x^(2)+2abx=b^(2),a^(2)ne0 (iv) 2(a^(2)+b^(2))x^(2)+2(a+b)x+1=0 (v) (b+c)x^(2)-(a+b+c)x+a=0

Without determining the roots of the following equations comment their nature: (i) 6sqrt3x^(2)-4x+sqrt3=0 (ii) 9a^(2)b^(2)x^(2)-48abcdx+64c^(2)d^(2)=0 (iii) a^(2)x^(2)+2abx=b^(2),a^(2)ne0 (iv) 2(a^(2)+b^(2))x^(2)+2(a+b)x+1=0 (v) (b+c)x^(2)-(a+b+c)x+a=0

abx^(2)+(b^(2)-ac)x-bc=0

Solve the equation a^(2)x^(2)-3abx+2b^(2)=0 by the method of completing the square.

Find the roots of the equation a^(2)x^(2)-3abx+2b^(2)=0 by the method of completing the square.

Solve by factorization: a^(2)x^(2)-3abx+2b^(2)=0

Solve the following quadratic equation : 6a^(2) x^(2) - 7abx - 3b^(2) = 0

If the polynomial (a^(2)-b^(2))x^(2)+2abx+(a^(2)+b^(2))a,b,c are constants, be a linear polynomial, then prove that a = b.