Home
Class 12
MATHS
(dy)/(dx)=(cos^(2)(a+y))/(sin a)...

(dy)/(dx)=(cos^(2)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If x sin (a + y) + sin a cos (a + y)= 0 , then prove that (dy)/(dx)= (sin^(2) (a + y))/(sin a)

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y=xsin(a+y) , prove that (dy)/(dx)=(sin ^ 2(a+y))/(sin(a+y)-y\ cos\ (a+y)) .

If sin y = x cos (a + y) , prove that (dy)/(dx) = (cos^2 (a + y))/(cos a)