Home
Class 14
MATHS
If log2=0. 30103 , then the number of di...

If `log2=0. 30103 ,` then the number of digit in `5^(20)` is a. `14` b. `16` c. `18` d. `25`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log2=0.30103 , then the number of digits in 4^(50) is

If log2=0.30103 , find the number of digits in 2^(56)

If log_(10)2= 0.3010 , then the number of digits in 16^(12) is

If log2=0.30103, find the number of digits in 2^(56).

If log(2)=0.30103 find the number of digits in 2^(100)

If log2=0.30103,log3=0.47712, then the number of digits in 6^(20) is a.15 b.16 c.17 d.18

If log2=0.30103, the number of digit in 4^(50) is a.30b.31c.100d.200

If log2=0. 30101 ,\ log3=0. 47712 , then the number of digits in 6^(20) is 15 b. 16 c. 17 d. 18