Home
Class 12
MATHS
Find the shortest distance between the ...

Find the shortest distance between the lines whose vector equations are` -> r=(1-t) hat i+(t-2) hat j+(3-2t) hat k`and ` -> r=(s+1) hat i+(2s-1) hat j-(2s+1) hat k`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines whose vector equations are quad vec r=(1-t)hat i+(t-2)hat j+(3-2t)hat k and vec r=(s+1)hat i+(2s-1)hat j-(2s+1)hat k

Find the shortest distance between the following lines whose vector equations are: vec r=(1-t)hat i+(t-2)hat j+(3-2t)hat k and vec r=(s+1)hat i+(2s-1)hat j-(2s+1)hat k

Find the shortest distance between the two lines whose vector equations are : vec(r)=(1-t)hat(i)+(t-2)hat(j)+(3-t)hat(k), vec(r)=(s+1)hat(i)+(2s-1)hat(j)-(2s+1)hat(k)

Find the shortest distance between the following pairs of line whose vector equation are: vec r=(1-t) hat i+(t-2) hat j+(3-t) hat k a n d\ vec r=(s+1) hat i+(2s-1) hat j-(2s+1) hat k

Find the shortest distance between the lines whose vector equations are -> r=( hat i+2 hat j+3 hat k)+lambda( hat i-3 hat j+2 hat k) and -> r=4 hat i+5 hat j+6 hat k+mu(2 hat i+3 hat j+ hat k) .

Find the shortest distance between the lines l1 and l2 whose vector equations are -> r= hat i+ hat j+lambda(2 hat i- hat j+ hat k) (1)and -> r=2 hat i+ hat j-k+mu(3 hat i-5 hat j+2 hat k) (2)

Find the shortest distance between the lines whose vector equations are vec r=( hat i+2 hat j+3 hat k)+ lambda(hat i-3 hat j+2 hat k) and vec r=(4 hat i +5 hat j+6 hat k)+mu(2 hat i +3 hat j+ hat k)

Find the shortest distance between the lines whose vector equations are: vec r=2 hat i- hat j- hat k+lambda(2 hat i-5 hat j+2 hat k)a n d\ , vec r= hat i+2 hat j+ hat k+ mu( hat i- hat j+ hat k)dot

Find the shortest distance between the following pairs of line whose vector equation are: vec r=( hat i+2 hat j+3 hat k+lambda(2 hat i+3 hat j+4 hat k)a n d\ vec r=(2 hat i+4 hat j+5 hat k)+mu(3 hat i+4 hat j+5 hat k)

Find the shortest distance between the two lines whose vector equations are : vec(r)=(hat(i)+hat(j))+t(2hat(i)-hat(j)+hat(k)), vec(r)=(2hat(i)+hat(j)-hat(k))+s(3hat(i)-5hat(k)+2hat(k))