Home
Class 11
MATHS
" coeft "qx^(50)" in "(1+x)^(41)(1-x+2e^...

" coeft "qx^(50)" in "(1+x)^(41)(1-x+2e^(2))^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of x^(50) in (1+x)^(41)(1-x+x^2)^(40) is

Coefficient of x^(50) in the expansion of (1 + x)^(41) (1 - x + x^(2))^(40) is

int e^(5x)cos4xdx=e^(5x)[a cos4x+b sin4x]+C then the value of (a+b) is (1)(9)/(41)(2)(2)/(41) (3) (3)/(41)(4)(4)/(41)

if lim_(x rarr0)(p tan qx^(2)-3cos^(2)x+4)^((1)/(3x^(2)))=e^((5)/(3))

int e^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))*dx is equal to a.(1)/(2)xe^(x^(2))e^(x^(4))+c b.(1)/(2)x^(2)e^(x^(4))+c c.(1)/(2)e^(x^(2))e^(x^(4))+cd(1)/(2)x^(2)e^(x^(2))e^(x^(4))+c

If lim_(x rarr0)(p tan qx^(2)-3cos^(2)x+4)^(1/(3x^(2)))=e^(5/3),p,q in R then :

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

(inte^(x^4)(x+x^3+2x^5)e^(x^2) dx) is equal to (a) 1/2x e^(x^2)e^(x^4)+c (b) 1/2x^2e^(x^4)+c (c) 1/2e^(x^2)e^(x^4)+c (d) 1/2x^2e^(x^2)e^x^4+c