Home
Class 12
MATHS
int(0)^((pi)/(2))sin2x*log(t+4nx)dx...

int_(0)^((pi)/(2))sin2x*log(t+4nx)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))sin2x*log(tan x)dx=

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

int_(0)^((pi)/(2))(sin8x log(cot x))/(cos2x)dx

Prove that int_(0)^((pi)/(2)) sin 2x log ( tan x ) dx = 0

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

If n=2m+1,m in N uu{0}, then int_(0)^((pi)/(2))(sin nx)/(sin x)dx is equal to (i)pi(ii)(pi)/(2)(iii)(pi)/(4) (iv) none of these

Show : int_(0)^((pi)/(2))sinxf(sin2x)dx=int_(0)^((pi)/(2))cosxf(sin2x)dx

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(sin x)dx

int_0^(pi/2)sin2x log(tanx)dx