Similar Questions
Explore conceptually related problems
Recommended Questions
- lim(x rarr0)(x cot(4x))/(sin^(2)x cot^(2)(2x))" is equal to: "
Text Solution
|
- The value of lim(x rarr0)[ln(1+sin^(2)x)cot ln^(2)(1+x)] is :
Text Solution
|
- lim(x rarr0)(cot x)^(sin x)
Text Solution
|
- lim(x rarr0)[ln(1+sin^(2)x)cot ln^(2)(1+x)]
Text Solution
|
- lim(x rarr0)(1+sin x)^(cot x)
Text Solution
|
- lim(x->0) {1/x^2 - cot^2x}
Text Solution
|
- lim (x rarr0) (2x cot ecx + 3) / (3x cot ecx + 2)
Text Solution
|
- The value of lim(X->0) (1/x-cotx) equals
Text Solution
|
- Let a=lim(x rarr0)x cot x and b=lim(x rarr0)x log x then
Text Solution
|