Home
Class 10
MATHS
" 15.If "A=[[cos alpha,sin alpha],[-sin ...

" 15.If "A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]]" then prove that "A^(n)=[[cos n alpha,sin n alpha],[-sin n alpha,cos n alpha]]," where "n" is a positive intege "

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[Cos alpha,sin alpha],[-Sin alpha,cos alpha]] then A^(2)

A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] , then find | A |

If A=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then "AA"^(T)=

If A_alpha=[cosalphasinalpha-sinalphacosalpha] , then prove that (A_alpha)^n=[cos n\ alphasinn\ alpha-sinn\ alpha cos n\ alpha] for every positive integer n .

If A_(alpha)=[cos alpha sin alpha-sin alpha cos alpha], then prove that (A_(alpha))^(n)=[cositive in n alpha-s in n alpha cos n alpha] for every positive integer n.

If A = [(cos alpha sin alpha),(-sinalpha, cosalpha)] , prove (by inducton ) that A^n = [(cos n alpha, sinnalpha),(-sin n alpha cosn alpha)] for all positive integral n.

If A =[(cos alpha, sin alpha),(-sin alpha, cos alpha)] , then find A^(T) A.

If A = [(cos alpha,sin alpha),(-sin alpha,cos alpha)] then A^(10) is equal to