Home
Class 12
MATHS
(iii)x=t+(1)/(t),y=t-(1)/(t)...

(iii)x=t+(1)/(t),y=t-(1)/(t)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

If x=t+(1)/(t),y=t-(1)/(t)," where "tne0," then: "(d^(2)y)/(dx^(2))=

If x=t+(1)/(t),y=t-(1)/(t) , then find (dy)/(dx) .

The curve repersented by x=5(t+(1)/(t)),y=(t-(1)/(t)),t ne 0 is

If t is a parameter, then x=a(t+(1)/(t)),y=b(t-(1)/(t)) represents

If x=2(t+(1)/(t)),y=3(t-(1)/(t)) then (x^(2))/(4)-(y^(2))/(9) is equal to

If x=t+(1)/(t) and y=t-(1)/(t) , where t is a parameter,then a value of (dy)/(dx)

If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

If t is a parameter, then x=a(t+(1)/(t)) , y=b(t-(1)/(t)) represents