Home
Class 10
MATHS
(+cos theta-sin^(2)theta)/(sin theta(1+c...

(+cos theta-sin^(2)theta)/(sin theta(1+cos theta))=cot theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

(sin3 theta-sin theta)/(cos theta-cos3 theta)=cot2 theta

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

prove that (cos theta)/(1-tan theta)+(sin theta)/(1-cot theta)=cos theta+sin theta

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta*cot theta=-1

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta cot theta=-1