Home
Class 8
MATHS
((3)/(7)z-(1)/(2))/(z-(1)/(4))-(3)/(14)=...

((3)/(7)z-(1)/(2))/(z-(1)/(4))-(3)/(14)=(1)/(7)

Promotional Banner

Similar Questions

Explore conceptually related problems

If2^(x)=4^(y)=8^(z) and ((1)/(2x)+(1)/(4y)+(1)/(6z))=(24)/(7), then z=?(7)/(48)b)(48)/(7)c)(44)/(7)}

The distance of point of intersection of lines (x-4)/(1)=(x+3)/(-4)=(z-1)/(7) and (x-1)/(2)=(y+1)/(-3)=(z+10)/(8) from (1,-4,7) is

If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7) , then

If (5z_(2))/(7z_(1)) is purely imaginary,then |(2z_(1)+3z_(2))/(2z_(1)-3z_(2))|=(A)(5)/(7)(B)(7)/(9)(C)(25)/(49)(D)1

The lines (x-2)/(2)=(y)/(-2)=(z-7)/(16) and (x+3)/(4)=(y+2)/(3)=(z+2)/(1) intersect at the point "P" .If the distance of "P" from the line (x+1)/(2)=(y-1)/(3)=(z-1)/(1) is "l" ,then 14l^(2) is equal to

L_(1):(x+1)/(-3)=(y-3)/(2)=(z+2)/(1),L_(2):(x)/(1)=(y-7)/(-3)=(z+7)/(2) Equation of plane containinng L_(1) and L_(2) is -

L_(1):(x+1)/(-3)=(y-3)/(2)=(z+2)/(1),L_(2):(x)/(1)=(y-7)/(-3)=(z+7)/(2) The lines L_(1) and L_(2) intersect at the point

L_(1):(x+1)/(-3)=(y-3)/(2)=(z+2)/(1),L_(2):(x)/(1)=(y-7)/(-3)=(z+7)/(2) The lines L_(1) and L_(2) are -

L_(1):(x+1)/(-3)=(y-3)/(2)=(z+2)/(1),L_(2):(x)/(1)=(y-7)/(-3)=(z+7)/(2) The lines L_(1) and L_(2) are -