Home
Class 12
MATHS
[int(1-x^(7))/(x(1+x^(7)))dx" equals "],...

[int(1-x^(7))/(x(1+x^(7)))dx" equals "],[[" (A) "ln x+(2)/(7)ln(1+x^(7))+c," (B) "ln x-(2)/(7)ln(1-x^(7))+c],[" (C) "ln x-(2)/(7)ln(1+x^(7))+c," (D) "ln x+(2)/(7)ln(1-x^(7))+c]]

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(x(6(log x)^(2)+7log x+2)dx)

int(1)/((x)(6(log x)^(2)+7log x+2))dx

If (1-x^(7))/(x(1+x^(7)))dx=a ln|x|+b ln|x^(7)+1|+c then a=1,b=(2)/(7) (b) a=-1,b=(2)/(7)a=1,b=-(2)/(7)(d)a=-1,b=-(2)/(7)

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

int (2x ^ (3) + 3x ^ (2) + 4x + 5) / (2x + 1) dx equls to: (A) (x ^ (3)) / (2) + (x ^ (2)) / (2) +3 (x) / (2) + (7) / (4) ln (2x + 1) + C (B) 5 (x ^ (3)) / (2) + 6 (x) / (2) + (7) / (4) ln (2x + 1) + C (C) 3 (x ^ (3)) / (2) + 3 (x ^ (2)) / (2) + (7 ) / (4) ln (2x + 1) + C (D) (x ^ (2)) / (2) + 3 (x) / (2) + (7) / (4) ln (2x + 1) + C

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

If : int(1-x^(7))/(x(1+x^(7)))dx=a.log|x|+b.log|x^(7)+1|+c, then : (a, b)-=

int((x+1)^(2))/(x(x^(2)+1))dx is equal to a) "log"|x(x^(2)+1)|+C b) "log"|x|+C c) "log"|x|+2"tan"^(-1)x+C d) "log"(1/(1+x^(2)))+C

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

int_(-4)^(4) log ((7-x )/(7+x)) dx=?