Home
Class 12
MATHS
" (ii) "sin(alpha+beta)=(2ab)/(a^(2)+b^(...

" (ii) "sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If angles alpha and beta satisfy the equation a cos theta+ b sin theta= c(a,b,c are constants), prove that- (a) sin (alpha+ beta)= (2ab)/(a^(2)+b^(2)) (b) cos (alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2)) (c) cos (alpha- beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are distict roots of a cos theta+b sin theta=c, prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If s in alpha+s in beta=a and cos alpha+cos beta=b show that: sin(alpha+beta)=(2ab)/(a^(2)+b^(2))cos(alpha+beta)=(b^(2)-a^(2))/(b^(2)+a^(2))

If alpha and beta be two different roots of equation,a cos theta+b sin theta=c prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If sin alpha+sin beta=a and cos alpha+cos beta=b show that sin(alpha+beta)=(2ab)/(alpha^(2)+beta^(2))

If alpha and beta be two roots of the equation a cos theta+ b sin theta=c , show that sin alpha+ sin beta=(2bc)/(a^(2)+b^(2)) ,sin alpha sin beta =(c^(2)-a^(2))/(a^(2)+b^(2)) and tan (alpha+ beta)=(2ab)/(a^(2)-b^(2))