Home
Class 11
MATHS
[" (i) "(a cos alpha,a sin alpha)" and "...

[" (i) "(a cos alpha,a sin alpha)" and "(a cos beta,c)],[" (ii) "(at_(1)^(2),2at_(1))" and "(at_(2)^(2),2at_(2))],[" (iii) "(a-b,b-a),(a+b,a+b)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the distance between the points: P(-6,7) and Q(-1,-5)R(a+b,a-b) and S(a-b-b)A(at_(1)^(2),2at_(1)) and B(at_(2)^(2),2at_(2))

The distance between the points (a cos alpha, a sin alpha) and (a cos beta, a sin beta) is a) 2|sin((alpha-beta)/(2))| b) 2|a sin((alpha-beta)/(2))| c) 2|a cos((alpha-beta)/(2))| d) |a cos((alpha-beta)/(2))|

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

If the points : A(at_(1)^(2),2at_(1)),B(at_(2)^(2),2at_(2)) and C(a,0) are collinear,then t_(1)t_(2) are equal to

If s in alpha+s in beta=a and cos alpha+cos beta=b show that :cos(alpha+beta)=(b^(2)-a^(2))/(b^(2)+a^(2))

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/(2))=

If sin alpha+sin beta=a and cos alpha+cos beta=b prove that :cos(alpha-beta)=(1)/(2)(a^(2)+b^(2)-2)

If sin alpha+sin beta=a and cos alpha+cos beta=b show that sin(alpha+beta)=(2ab)/(alpha^(2)+beta^(2))