Home
Class 12
MATHS
Let f(x)=lnx&g(x)=(x^4-x^3+3x^2-2x+2)/(2...

Let `f(x)=lnx&g(x)=(x^4-x^3+3x^2-2x+2)/(2x^2-2x+3)`. The domain of `f(g(x))` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=ln x&g(x)=(x^(4)-x^(3)+3x^(2)-2x+2)/(2x^(2)-2x+3) The domain of f(g(x)) is-

Let f(x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

Let fog (x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Let f(x) =1/2-tan((pix)/2) , -1

Let f(x) = 3/( 3x^2 - 9) and g(x)= x^2/( 3x^2 - 9) int (g(x) - f(x)) dx is equal to ?