Home
Class 12
MATHS
[" Let "vec u=hat i+hat j,vec v=hat i-ha...

[" Let "vec u=hat i+hat j,vec v=hat i-hat j" and "vec w=hat i+2hat j+3hat k." If "hat n" is a unit "],[" vector such that "vec u.hat n=0" and "vec v.hat n=0," then "|vec w.hat n|" is equal "],[" to "],[[" (a) "3," (b) "0," (c) "1," (d) "2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k .If hat n is a unit vector such that vec u*hat n=0 and vec v*hat n=0 then |vec w*hat n| is equal to

Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k .If hat n is a unit vector such that vec u*hat n=0 and vec v*hat n=0 then |vec w*hat n| is equal to

vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2hat j+3hat k .If widehat n is a unit vector such that vec u*widehat n=0 and vec v*widehat n then |vec w*widehat n| is equal to

Let vec u=hat(i)+hat(j), vec v=hat(i)-hat(j) and vec w=hat(i)+2hat(j)+3hat(k) . If hat(n) is a unit vector such that vec u*hat(n)=0 and vec v*hat(n)=0 , then |vec w*hat(n)| is

if vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2hat j+3hat k if vec n is unit vector such that vec u*vec n=0 and vec v.vec n=0 then find out |vec w*vec n|

Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = hat(i) + 2hat(j) + 3hat(k) . If hat(n) is a unit vector such that vec(u).vec(n) = 0 and vec(v).hat(n) = 0 then |vec(w).hat(n)| is equal to.

If vec u = i+j, vec nu = i-j , and vec w = i+2j+3k . If hat n is a unit vector such that vec u . hat n = 0, vec nu . hat n = 0 then |vec w . hat n| =

Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i+ hat j- hat kdot Then find [vec a vec b vec c]

If vec a= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k a n d vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec cdot