Home
Class 11
MATHS
Suppose A, B, C are defined as A=a^2b+a ...

Suppose A, B, C are defined as `A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, a n dC=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0` and the equation `A x^2+B x+C=0` has equal roots, then `a ,b ,c` are in `AdotPdot` b. `GdotPdot` c. `HdotPdot` d. `AdotGdotPdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2 , B=b^2c+b c^2-a^2b-a b^2 - bc^2, and C=a^2c +'a c^2-b^2' c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, and C=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2 , B=b^2c+b c^2-a^2b-a b^2,and C=a^2c +'a c^2-b^2' c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

If a(b-c)x^(2)+b(c-a)x+c(a-b)=0 has equal root,then a,b,c are in

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal,then a,b,c are in

If the quadratic equation (b-c)x_2+(c-a)x+(a-)=0 has equal roots, then show that 2b=a+c .

If the equation a(b - c)x^2 + b(c - a)x+c (a -b) = 0 has equal roots, prove that 1/a+1/c=2/b

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c

If the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0 are equal, then prove that 2b=a+c