Home
Class 14
MATHS
tan^(-1)2x+tan^(-1)3x=pi/4...

tan^(-1)2x+tan^(-1)3x=pi/4

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x when tan^(-1)2x+tan^(-1)3x=n pi+(3 pi)/(4)

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

If tan^-1 x + tan^-1 2x + tan^-1 3x = pi , then: