Home
Class 12
MATHS
If A^2-A +I = 0, then the inverse of A i...

If `A^2-A +I = 0`, then the inverse of A is: (A) `A+I` (B) `A` (C) `A-I` (D) `I-A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2)-A+ I =0 then the inverse of A is - (a) I-A (b) A-I (c) A (d) A+I

If A^2-A+I=0, then the inverse of A is a. A^(-2) b. A+I c. I-A d. A-I

If A^2-A+I=0, then the inverse of A is a. A^(-2) b. A+I c. I-A d. A-I

If A^(2) - A + I = 0 , then the inverse of the matrix A is

If A^(2)-A+I=0 then the inverse of the matrix A is

If A^2-A+I=0, then the invers of A is A^(-2) b. A+I c. I-A d. A-I

If A^(2)-A+I=0, then the invers of A is A^(-2) b.A+I c.I-A d.A-I

Matrices A and B will be inverse of each other only if (A) A B=B A (B) A B=B A=0 (C) A B=0,B A=I (D) A B=B A=I

The additive inverse of (1+2i)/(1+i) is

[veci vec i vec i] = (A) 0 (B) 1 (C) vec i (D) vec k