Home
Class 12
MATHS
int[f(x).phi'(x)-f'(x).phi(x)]/[f(x).phi...

`int[f(x).phi'(x)-f'(x).phi(x)]/[f(x).phi(x)]{logphi(x)-logf(x)}.dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int({f(x)phi'(x)-f'(x)phi(x)})/(f(x)phi(x)){ ln phi(x)-lnf(x)}dx is equal to

int (f(x)phi'(x)-phi(x)f'(x))/(f(x)phi(x)) {logphi(x) - logf(x)} dx is

Statement 1:int({f(x)phi'(x)-f'(x)phi(x)})/(f(x)phi(x))-log f(x)dx=(1)/(2){(phi(x))/(f(x))}^(2)+c Statement 2:int(h(x))^(n)h'(x)dx=((h(x)^(n+1))/(n+1)+c

The value of int(f(x)phi\'(x)+phi(x)f\'(x))/((f(x)*phi(x)+1)sqrt(phi(x)*f(x)-1))dx is (A) cos^-1sqrt(f(x)^2-phi(x)^2) (B) tan^-1[f(x)phi(x)] (C) sin^-1sqrt(f(x)/(phi(x)) (D) none of these

The value of int(f(x)phi\'(x)+phi(x)f\'(x))/((f(x)*phi(x)+1)sqrt(phi(x)*f(x)-1))dx is (A) cos^-1sqrt(f(x)^2-phi(x)^2) (B) tan^-1[f(x)phi(x)] (C) sin^-1sqrt(f(x)/(phi(x)) (D) none of these

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

int_(a)^(b)f(x)dx=phi(b)-phi(a)

int(f'(x))/(f(x).logf(x))dx=

Write the value of int({f(x)phi(x)+f(x)phi(x)}{logphi(x)+iogf(x)})/(f(x)phi(x))dx.