Home
Class 12
MATHS
If vec a, vec b and vec c be any three ...

If ` vec a, vec b and vec c` be any three vectors then show that ` vec a + ( vec b + vec c) = ( vec a + vec b) + vec c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If (vec a xx vec b) xx vec c = vec a xx (vec b xx vec c) , where vec a, vec b and vec c are any three vectors such that vec a. vec b ne 0, vec b . vec c ne 0 , then vec a and vec c are

If vec a, vec b, vec c are three vectors such that vec a + vec b + vec c = vec 0 and |vec a| = 2, |vec b| = 3, |vec c| = 5 , then the value of vec a . vec b + vec b . vec c + vec c . vec a =

If a, b and c are any three vectors, then prove that vec a.(vec b+vec c)=(vec a.vec b)+(vec a.vec c)

If vec a, vec b, vec c are three vectors such that vec a . (vec b + vec c) + vec b . (vec c + vec a) + vec c . (vec a + vec b) = 0 and |vec a| = 1, |vec b | = 4, |vec c| = 8 , then |vec a + vec b + vec c| =

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

Let vec a, vec b, vec b, vec b are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c = 3 and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then

Let vec a , vec b , vec c are three vectors , such that vec a + vec b + vec c = vec 0 .If , |vec a|=3 , |vec b|=4 and | vec c|=5 , then the value of, |vec a+vec b|^(2) + |vec b-vec c|^(2) + |vec c+vec a|^(2) , equal to :

If vec a, vec b, vec c are three vectors such that | vec b | = | vec c | then {(vec a + vec b) xx (vec a + vec c)} xx {(vec b xxvec c)} * (vec b + vec c) =