Home
Class 12
MATHS
If f(1)=3, f'(1) = 2, f''(1)=4, then (...

If `f(1)=3, f'(1) = 2, f''(1)=4`, then `(f^-)''(3)=` (where `f^-1=`inverse of `y = f(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x-1)=f(x+1) , where f(x)=x^2-2x+3 , then: x=

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

If f(x)=1-4x , and f^(-1)(x) is the inverse of f(x), then f(-3)f^(-1)(-3)=

{:(1.if F (X) = (1)/(x) then f'(1) =A, 2.If f (x) = (x+1)/(x+3) then f '(-1) =B),(3.If f(x)=x^(2)then f'(1)=C,4. If f(x)=logx then f'(3)=D):} The ascending order of A,B,C ,D is

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

If f(x+1/x)=x^2+1/x^2+8 then f(3), f(5), f(-1)

2f(x)+3f(-x)=15-4x then [f(1)+f(-1)]=?

If f(x) is a one to one function, where f(x)=x^(2)-x+1 , then find the inverse of the f(x):