Home
Class 12
MATHS
If f(x)=0 be a quadratic equation such t...

If f(x)=0 be a quadratic equation such that `f(-pi)`=`f(pi)`=0 and `f(pi/2)=[-3pi^2]/4`,then `lim_[x->pi] f(x)/sin(sinx)` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=-(3pi^(2))/(4) , then lim_(xto -pi^+) (f(x))/(sin(sinx)) is equal to

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=-(3pi^(2))/(4) , then lim_(xto -pi^+) (f(x))/(sin(sinx)) is equal to

If f(x)=0 be a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=(-3 pi^(2))/(4), then lim_(x rarr pi)(f(x))/(sin(sin x)) is equal to:

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=-(3 pi^(2))/(4) then lim_(x rarr-pi)(f(x))/(sin(sin x)) is equal to (a)0( b) pi (c) 2 pi (d) none of these

If f(x) = 0 is a quadratic equation such that f(-pi) =f(pi) = 0 and f(pi/2) = -(3pi^(2))/4 , then : lim _(x to - pi ) f(x)/(sin (sin x))=

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to

f:[-3 pi,2 pi]f(x)=sin3x