Home
Class 12
MATHS
(x+ycosy/x)dx=xcos(y/x) dy...

`(x+ycosy/x)dx=xcos(y/x) dy`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(y/x)=lnabs(x)+alpha/2 is a solution of differential equation xcos(y/x)dy/dx=ycos(y/x)+x where y(1)=pi/3 then alpha^2=

(x+ycos""(y)/(x))dx=xcos""(y)/(x)dy

Show that the given differential equation is homogeneous and solve it: {xcos(y/x) + ysin(y/x)}y dx = {ysin(y/x) - xcos(y/x)} xdy

Solve xcos(y/x)dy={ycos(y/x)+x}dx

Solve : {xcos(y/x)+ysin(y/x)}ydx={ysin(y/x)-xcos(y/x)}xdy

Solve : {xcos(y/x)+ysin(y/x)}ydx={ysin(y/x)-xcos(y/x)}xdy

Solve : {xcos(y/x)+ysin(y/x)}ydx={ysin(y/x)-xcos(y/x)}xdy

(xcos(y/x))(dy)/(dx)=(ycos(y/x))+x