Home
Class 12
MATHS
OABCD is a pyramid with square base ABCD...

OABCD is a pyramid with square base ABCD such that `bar(OA),bar(OB),bar(OC),bar(OD)` are unit vectors and `bar(OA) , bar(OB) = bar(OB) .bar(OC) = bar(OC) . bar(OD) = bar(OD) . bar(OA) =1/2`, then volume of the pyramid is

Promotional Banner

Similar Questions

Explore conceptually related problems

bar(OA)=bara,bar(OB)=barb,bar(OC)=barc then volume of the parallelopiped is :

If bar(a) is a unit vector then bar(a)xx{bar(a)xx(bar(a)xxbar(b))}

If bar(a) is a unit vector then bar(a)xx{bar(a)xx(bar(a)xxbar(b))=

In a Delta ABC, bar(OA)= bara, bar(OB)=barb, bar(OC) = barc . if (bara-barb).(barc-barb)=0 , then P.V. of the circumcentre is

bar(a),bar(b) and bar( c ) are three unit vectors. bar(a)_|_bar(b) and bar(a)||bar( c ) then bar(a)xx(bar(b)xx bar( c )) = …………….

OACB is a parallelogram with bar(OC)=bar(a), bar(AB)=bar(b)" then "bar(OA)=

If bar(OA) = bar(i) + bar(j)+ bar(k), bar(AB) = 3bar(i)-2bar(j)+bar(k), bar(BC) = bar(i)+2bar(j)-2bar(k), bar(CD) = 2bar(i)+bar(j)+3bar(k) then find the vector bar(OD) .

Let bar(a),bar(b) be two non-collinear unit vectors, if bar(alpha) = bar(a) -(bar(a).bar(b))bar(b) and bar(beta) = bar(a) xx bar(b), then show that |bar(beta)| = |bar(alpha)| .