Home
Class 12
MATHS
If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2...

If `f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2`, then the value of `lim_(xto a) (g(x)f(a)-g(a)f(x))/(x-a)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2 , then the value of lim_(xrarr a) (g(x)f(a)-g(a)f(x))/(x-a) , is

If f(a)=2,f'(a)=1,g(a)=-,g'(a)=2 , then the value of lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is :

If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of lim_(x->a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) 1/5 (c) 5 (d) none of these

If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of lim_(x->a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) 1/5 (c) 5 (d) none of these

If f (a) =2, f '(a) =1, g (a) =-3 .g'(a) =-1 , then the value of lim _(xtoa)(f(a) g(x) -g(a)f(x))/(a-x) is equal to-

If (a)=2,f'(a)=1,g(a)=-1,g'(a)=2f(a)=2,f'(a)=1,g(a)=-1,g'(a)=2 then the value of lim_(x rarr a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) (1)/(5)(c)5(d) none of these

If f(a) = 2, f'(a) = 1, g(a) = -1 and g'(a) = 2 , find the value of lim_(x rarr a)(g(x)f(a) - g(a)f(x))/(x-a)

If f(a)= 2, f'(a) = 1, g(a)=-1 and g'(a)=2, then find underset(xtoa)lim(g(x)f(a)-g(a)f(x))/(x-a) .

If f (a) = 2 , f'(a) = 1, g (a) = -1 and g'(a) = 2 , show that lim_(x to a)(g(x)f(a)-f(x)g(a))/(x-a) = 5