Home
Class 11
MATHS
(lim)(x->0)(1-cos2x)/x is a. 1 b . 2 c. ...

`(lim)_(x->0)(1-cos2x)/x` is a. 1 b . 2 c. 4 d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

The (lim)_(x->0)(cos x)^(cotx) is -1 b. 1 c. 0 d. none of these

(lim)_(x rarr0)(1-cos2x)/(x) is a.1b*2c.4d.0

(lim)_(x->0)(cos2x-1)/(cosx-1)

(lim)_(x->0)(sin2x)/x is equal to a. 1 b . 1/2 c. 2 d. 0

lim_(xto0)(1-cos2x)/(2x^(2)) is

The value of (lim)_(x->0)(e^(x^2)-e^x+x)/(1-cos2x) is a. 1 b. 1/2 c. 1/4 d.1/ 8

The value of (lim)_(x rarr0)(e^(x^(2))-e^(x)+x)/(1-cos2x) is a.1 b.2 c.4d.8

The value of (lim)x->0(sqrt(1-cos"x"^2))/(1-cosx) is a. 1/2 b. 2 c. sqrt(2) d. none of these

The value of lim_(x->0)(sqrt(1-cos"x"^2))/(1-cosx) is a. 1/2 b. 2 c. sqrt(2) d. none of these

If f(x)=(lim)_(nvecoo)(cos(x/(sqrt(n))))^n , then the value of (lim)(xvec0)(f(x)-1)/x is 0 b. 1 c. 2 d. 3//2