Home
Class 12
MATHS
If y=e^(sinx)+(tanx)^(x)," prove that "(...

If `y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].`

Promotional Banner

Similar Questions

Explore conceptually related problems

y = x^(sinx).(tanx)^(x)

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

"If "y=(tanx)^(cotx)+(cotx)^(tanx)",prove that "(dy)/(dx)=(tanx)^(cotx)."cosec"^(2)x(1-logtanx)+(cotx)^(tanx).sec^(2)x[log(cotx)-1].

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)

If y=(sinx +cosx )^((1+tanx )),then (dy)/(dx) =