Home
Class 11
MATHS
Prove that 3(sinx-cosx)^4+4(sin^6x+cos...

Prove that `3(sinx-cosx)^4+4(sin^6x+cos^6x)+6(sinx+cosx)^2=13`

Promotional Banner

Similar Questions

Explore conceptually related problems

3(sinx-cosx)^4+6(sinx+cosx)^2+4(sin^6x+cos^6x)=

Prove that: 3 (sin x-cos x)^4+ 6 (sin x +cosx)^ 2+4 (sin^6 x+ cos^6 x) -13=0

(sinx+2cos x)/(3 sinx+4cosx)

The value of the expression 3(sinx-cosx)^(4)+4(sin^(6)x+cos^(6)x)+6(sinx+cosx)^(2) is

Prove that (1+sinx-cosx)/(1+sinx+cosx) +(1+sinx+cosx)/(1+sinx-cosx) =2 cosec x

Prove that (1+sinx-cosx)/(1+sinx+cosx) +(1+sinx+cosx)/(1+sinx-cosx) =2 cosec x

prove that 1-1/2(sin2x)=(sin^3 x +cos^3 x)/(sinx +cosx)

Show that 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=13

3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=

Prove that (1+sinx-cosx)/(1+sinx+cosx)+(1+sinx+cosx)/(1+sinx-cosx) =2+2"cosec "x