Home
Class 11
MATHS
Let f(x) be defined in (0, 1), then the...

Let `f(x)` be defined in `(0, 1)`, then the domain of definition of `f(e^x) + f(ln|x|)` is (A) `(1/e,1)` (B) `(-e,-1)` (C) `(1,e)` (D) `(e^2,e^2+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is a. (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is (0,1) Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is (0,1) Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (a) (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x) is (0,1). Then the domain of (f(e^(x))+f(1n|x|) is (-1,e) (b) (1,e)(-e,-1)(d)(-e,1)

The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (-1, e) (b) (1, e) (-e ,-1) (d) (-e ,1)

The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (a)(-1, e) (b). (1, e) (c).(-e ,-1) (d) (-e ,1)

Find the domain of definition of the function defined by, f(x)=(1)/(log_(e)(2-x))+sqrt(x+3)

Find the domain of definition of the function defined by f(x)=1/log_e(2-x)+sqrtx+3