Home
Class 11
MATHS
If z = x+iy is any complex number and |z...

If `z = x+iy` is any complex number and `|z-1| = |z+1|` then show that `|z| = y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=x+iy is a complex number with x,y in Q and |z|=1, then show that |z^(2n)-1| is a rational numberfor every n in N

If z=x+iy is a complex number with x, y in Q and |z| = 1 , then show that |z^(2n)-1| is a rational numberfor every n in N .

If z=x+iy is a complex number with x, y in Q and |z| = 1 , then show that |z^(2n)-1| is a rational numberfor every n in N .

If z=x+iy is a complex number with x, y in Q and |z| = 1 , then show that |z^(2n)-1| is a rational numberfor every n in N .

If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is

If z = x + iy is a complex number such that |(z-4i)/(z+ 4i)| = 1 show that the locus of z is real axis.

If z=x+iy is a complex number such that |z|=Re(iz)+1 , then the locus of z is

If z=x +iy is a complex number satisfying |z+i//2|^2=|z-i//2|^2 then the locus of z is

If z=x+iy is a complex number satisfying |z+i/2|^2=|z-i/2|^2 , then the locus of z is