Home
Class 11
MATHS
Let siny=sin(a+y) then (dy)/(dx) equals...

Let `siny=sin(a+y)` then `(dy)/(dx)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If siny=xsin(a+y) , then (dy)/(dx) is :

If x sin(a+y) = siny then (dy)/(dx) is equal to

If siny=xsin(a+y) , then (dy)/(dx) is (a) (sina)/(sina sin^2(a+y)) (b) (sin^2(a+y))/(sina) (c) sina sin^2(a+y) (d) (sin^2(a-y))/(sina)

If siny=xcos(a+y) , then find (dy)/(dx)

If y = sqrt(sin + y ) "then" (dy)/(dx) is equal to

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If siny = x sin(a+y) then show that (dy)/(dx)= (sina)/(1-2xcos a+x^2) .