Home
Class 12
MATHS
Solve for x : x+(log)(10)(1+2^x)=xdot(lo...

Solve for `x : x+(log)_(10)(1+2^x)=xdot(log)_(10)5+log_(10)6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : x+(log)_(10)(1+2^x)=x(dot(log)_(10)5+log_(10)6)

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

The number of positive integers satisfying x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6 is...........

The number of positive integers satisfying x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6 is...........

The number of positive integers satisfying x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6 is...........

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

Solve the following equation for x\ &\ y :(log)_(100)|x+y|=1/2,(log)_(10)y-(log)_(10)|x|=log_(100)4.