Home
Class 11
MATHS
The value of (cos^2 33^0-cos^2 57^0)/(s...

The value of ` (cos^2 33^0-cos^2 57^0)/(sin21^0-cos21^0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^2 33^@+cos^2 57^@=

(cos^(2)33^(@)-cos^(2)57^(@))/(sin21^(@)-cos21^(@))=

(2cos 40^0-cos 20^0)/(sin 20^0)=

The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0tan9^0)+cos162^0 is equal to

Prove that : (cos^2 33^@- cos^2 57^@)/(sin^2 frac (21^@) (2)- sin^2 frac (69^@)(2))=- sqrt2 .

The value of cos^2 10^0-cos10^0cos50^0+cos^2 50^0 is equal to

Find the value of sin330^(0)cos120^(0)+sin300^(0)*cos210^(@)

( cos^(2) 33^(@) - cos^(2) 57^@)/( sin 21^(@) - cos 21^(@))=

The value of (cos24^(0))/(2tan33^(0)sin^(2)(57^(0)))+(sin162^(0))/(sin18^(0)-cos18^(0)tan9^(0))+cos162^(0) is equal to

Prove that: (cos^2 33^@-cos^2 57^@)/(sin^2(21/2)^@-sin^2(69/2)^@)=-sqrt(2)