Home
Class 11
MATHS
[(1)/(1!(n-1)!)+(1)/(3!(n-3)!)+(1)/(5!(n...

[(1)/(1!(n-1)!)+(1)/(3!(n-3)!)+(1)/(5!(n-5)!)+...=],[" (a) "(2^(n))/(n!)" ; for all even values of "n],[" (b) "(2^(n-1))/(n!);" for all values of "n" i.e.,all even and odd values "],[" (c) "0],[" (d) none of these "]

Promotional Banner

Similar Questions

Explore conceptually related problems

if 25C_(n+5)=25C_(2n-1) then sum of all values of n is:

Find the value of i^n+i^(n-1)+i^(n-2)+i^(n-3) for all n in Ndot

For all values of n . N ( n+1) (n+5) will be divisible by

(x^(n)-a^(n)) is divisible by (x-a) for all values of n (b) only for even values of n (c) only for odd values of n(d) only for prime values of n

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

If ""^(2n+1)P_(n-1) : ""^(2n-1)P_(n) =3 :5 the possible value of n will be :

The sum of the series 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n-1)!1!) is = (A) 1/(n!2^n) (B) 2^n/n! (C) 2^(n-1)/n! (D) 1/(n!2^(n-1)