Home
Class 12
MATHS
lf z = ilog(2-sqrt(-3)), then cos z =...

lf `z = ilog(2-sqrt(-3))`, then `cos z =`

A

`-1`

B

`-1//2`

C

1

D

2

Text Solution

Verified by Experts

`z=ilog(2=sqrt3)`
`rArr e^(iz)=e^(i"^(2)log(2-sqrt3))=e^(-log(2-sqrt3))`
`=e^(log(2-sqrt3)^(-1))=e^(log(2+sqrt3))=(2+sqrt3)`
`rArr cosz=(e^(iz)+e^(-iz))/(2)=((2+sqrt3)+(2-sqrt3))/(2)=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = ilog(2-sqrt3) , then cosz =

If Z=i log(2-sqrt(3)), then cos(Z)=

Assertion (A) : If z = ilog (2 - sqrt3) then cos z= 2 Reason (R) : cos h theta = (e^(itheta ) + e^(itheta))/(2)

If z=ilog_e(2-sqrt3) then the value of cosz

I : Value of i^i=e^(-pi/2) II : z=ilog(2+sqrt3) then sinz=2 which of above statement is true

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is