Home
Class 12
MATHS
If Sn=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n...

If `S_n=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-4))++1/(sqrt(3n^2+2n-1)),n in N ,` then `("lim")_(nvecoo)S_n` is equal to `pi/2` (b) 2 (c) 1 (d) `pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If quad S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+...+(1)/(sqrt(3n_(2)^(2)+2n-1)),n in N then lim_(n rarr oo)S_(n) is equal to (pi)/(2)(b)2(c)1(d)(pi)/(6),n in N

Evaluate: ("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

IfS_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))++1/(n+sqrt(n^2))],t h e n(lim)_(n rarr oo)S_n is equal to (a)log 2 (b) log4 (c)log 8 (d) none of these

If S_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))+....+1/(n+sqrt(n^2))] then (lim)_(n ->oo)S_n is equal to (A) log 2 (B) log4 (C) log8 (D) none of these

If S_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))+....+1/(n+sqrt(n^2))] then (lim)_(n ->oo)S_n is equal to (A) log 2 (B) log4 (C) log8 (D) none of these