Home
Class 11
MATHS
In A B C , the median A D divides /B A ...

In ` A B C ,` the median `A D` divides `/_B A C` such that `/_B A D :/_C A D=2:1` . Then `cos(A/3)` is equal to `(sinB)/(2sinC)` (b) `(sinC)/(2sinB)` `(2sinB)/(sinC)` (d) `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

In A B C , the median A D divides /_B A C such that /_B A D :/_C A D=2:1 . Then cos(A/3) is equal to (sinB)/(2sinC) (b) (sinC)/(2sinB) (2sinB)/(sinC) (d) none of these

sin(B-C)/(sinB*sinC)+sin(C-A)/(sinC*sinA)+(sin(A-B))/(sin A*sin B)=0

In DeltaABC , prove that: (a^(2)sin(B-C))/(sinA) + (b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

In triangleABC, a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=

Prove that (sin(B-C))/(sinB.sinC) + (sin(C-A))/(sinCsinA) + (sin(A-B))/(sinA.sinB) = 0

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

In any DeltaABC , prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

In a triangle ABC, prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0