Home
Class 12
MATHS
If f: Rvec(-1,1) defined by f(x)=(10^x-1...

If `f: Rvec(-1,1)` defined by `f(x)=(10^x-10^(-x))/(10^x+10^(-x))` is invertible, find `f^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr(-1,1) defined by f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible,find f^(-1)

Show that f: R rarr (-1,1) is defined by f(x) = (10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible also find f^(-1) .

If f(x) =(10^(x)-10^(-x))/(10^(x) +10^(-x)) then f^(-1)(x) =

f: R rarr (-1, 1) , f(x) = (10^(x)-10^(x))/(10^(x)+10^(-x)). If inverse of f^(-1) exists then find it .

If the function f:[1, oo) rarr [ 1,oo) defined by f(x) = 2^(x(x -1)) is invertible, then find f^(-1) (x).

Show that f : [0,1]rarr]0,1] defined by f(x)=1/(x^2+1) is invertible and find f^-1(x) .

If f: R to [0, infty) defined by f(x) = 10^(x) then f^(-1)(x) =

If f: R->R is defined by f(x)=10 x-7 , then write f^(-1)(x) .

If f: R->R is defined by f(x)=10 x-7 , then write f^(-1)(x) .

Show that f : R-{a} rarr R-{-1} defined by f(x)= (a+x)/(a-x) is invertible. Find the formula for f^-1(x) .