Home
Class 12
MATHS
(x^4+1)/(x(x^2+1)^2)dx=Aln|x|+B/(1+x^2)+...

`(x^4+1)/(x(x^2+1)^2)dx=Aln|x|+B/(1+x^2)+C ,`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

If int(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C then

If int((2x+1)dx)/(x^(4)+2x^(3)+x^(2)-1)=Aln|(x^(2)+x+1)/(x^(2)+x-1)|+C , then

If int((2x+1)dx)/(x^(4)+2x^(3)+x^(2)-1)=Aln|(x^(2)+x+1)/(x^(2)+x-1)|+C , then

If int(1-x^(7))/(x(1+x^(7)))dx=aln|x|+bln|x^(7)+1|+c , then

int(x^4-1)/(x^2sqrt(x^4+x^2+1))dx= sqrt(x^2+1/(x^2)+1)+C (sqrt(x^4+x^2+1))/(x^2)+C (sqrt(x^4+x^2+1))/x+C (d) none of these

If int(2x^2+3)/((x^2-1)(x^2+4))dx=alog((x-1)/(x+1))+btan^(- 1) (x/2)+C then the values of a and b are respectively (A) 1/2,1/2 (B) 1,1 (C) 1/2,1 (D) None

If y=(1+1/(x^2))/(1-1/(x^2)) , then (dy)/(dx) = a. -(4x)/((x^2-1)^2) b. -(4x)/(x^2-1) c. (1-x^2)/(4x) d. (4x)/(x^2-1)

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=