Home
Class 9
MATHS
(4)^(2x-1)-(16)^(x-1)=384...

(4)^(2x-1)-(16)^(x-1)=384

Promotional Banner

Similar Questions

Explore conceptually related problems

(2^(x-1)*4^(x+1))/(8^(x-1))=16

Simplify: (x-y)(x+y)x^(2)+y^(2))(x^(4)+y^(5))2x-1)(2x+1)(4x^(2)+1)(16x^(4)+1)(7m-8n)^(2)+(7m+8n)^(2)

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

Solve : (x-4)(x-7)(x-2)(x+1)=16

underset(xrarr16)"lim"(x^(1/4)-(16)^(1/4))/(x-16)= ?

16. "4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1).

Show that (16(32^(x))-2^(3x-2)*4^(x+1))/(15*2^(x-1)*16^(x))-(5*5^(x-1))/(sqrt(5^(2x))) is given

Solve: (x-4) (x-7) (x-2) (x+1)=16