Home
Class 12
MATHS
sqrt(1-x^(4))+sqrt(1-y^(4))=K(x^(2)...

sqrt(1-x^(4))+sqrt(1-y^(4))=K(x^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The order of the differential equation satisfying sqrt(1-x^4)+sqrt(1-y^4)=a(x^2-y^2) is

The order of the differential equation satisfying sqrt(1-x^4)+sqrt(1-y^4)=a(x^2-y^2) is

Form the differntial equation which is satisfied by sqrt(1-x^4)+sqrt(1-y^4)=a(x^2-y^2) , 'a' being an arbitrary constant.

The degree of the differential equation satisfying sqrt(1+x^(2))+sqrt(1+y^(2))=K(x sqrt(1+x^(2))-y sqrt(1+x^(2))) (1) 4(2)3(3)1(4)2

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

Let k[f(x)+f(y)]=f(x sqrt(1-y^(2))+y sqrt(1-x^(2))) then k=:

If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cos ec^(-1)z, then prove that sqrt(z^(2)-1)=(sqrt(1+x^(2))-xy)/(x+y sqrt(1-x^(2)))