Home
Class 12
MATHS
f(m)=(cot^(2)(pi)/(n)+cot^(2)(pi)/(n))/(...

f(m)=(cot^(2)(pi)/(n)+cot^(2)(pi)/(n))/((n>1,men)),lim_(n rarr oo)(cot^(2)((n pi)/(n))a)/(n^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(pi n)^(2/n) =

Evaluate: (lim_(n rarr oo)n cos((pi)/(4n))sin((pi)/(4n))

lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)

lim_(n rarr oo)[(1)/(n^(2))sec^(2)((pi)/(3n^(2)))+(2)/(n^(2))sec^ (2)((4 pi)/(3n^(2)))+(3)/(n^(2))sec^(2)((9 pi)/(3n^(2)))+. .....+(1)/(n)sec^(2)((pi)/(3))]

Evaluate: lim_(x rarr oo)sin^(n)((2 pi n)/(3n+1)),n in N

evaluate lim_ (n rarr oo) ((e ^ (n)) / (pi)) ^ ((1) / (n))

f (n) = cot ^ (2) ((pi) / (n)) + cot ^ (2) backslash (2 pi) / (n) + ............ + cot ^ (2) backslash ((n-1) pi) / (n), (n> 1, n in N) then lim_ (n rarr oo) (f (n)) / (n ^ (2)) is equal to (A) (1) / (2) (B) (1) / (3) (C) (2) / (3) (D) 1, (n> 1, n in N)

If z_(n)=cos((pi)/((2n+1)(2n+3)))+i sin((pi)/((2n+1)(2n+3))) ,then lim_(n rarr oo)(z_(1)*z_(2)*z_(3)...z_(n))=

int_(0)^((pi)/(2n))(dx)/(1+Cot^(n)nx)=

If |cos^-1(1)/(n)|lt (pi)/(2) , then lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}