Home
Class 12
MATHS
[x,y,z,],[x^(2),y^(2),z^(2)," an "," Tor...

[x,y,z,],[x^(2),y^(2),z^(2)," an "," Torrens "],[yz,zx,xy,],[" anffure "1,,,]

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

factorise: det[[x,y,zx^(2),y^(2),z^(2)yz,zx,xy]]

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

x+y-z=5 and x^(2)+y^(2)+z^(2)=29, find xy-yz-zx

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|