Home
Class 12
MATHS
" (17) Prove that "int(0)^((pi)/(2))(sin...

" (17) Prove that "int_(0)^((pi)/(2))(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))log(sqrt(2+1))(ch p,7)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(cos^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))(log(sqrt(2)+1))

Prove that int_(0)^((pi)/(2))(sin^(2)x)/(1+sin x cos x)dx=(pi)/(3sqrt(3))

Show that : int_(0)^((pi)/(2))(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))log(sqrt(2)+1)

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

Prove that int_0^(pi/2) \ sin^2 x / (1+sin x cos x) \ dx = pi/(3 sqrt(3)

Prove that int_(0)^(pi//2) (sin x -cos x)/(1+sin x cos x)dx = 0 .

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))