Home
Class 10
MATHS
" Prove that: "tan^(4)A+tan^(2)A=Sec^(4)...

" Prove that: "tan^(4)A+tan^(2)A=Sec^(4)A-Sec^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(4)theta + tan^(2)theta = sec^(4)theta - sec^(2) theta

Prove that : tan^(4)theta + tan^(2)theta = sec^(4)theta - sec^(2) theta

prove that 1+2sec^(2)A*tan^(2)A-sec^(4)A-tan^(4)A=0

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

Prove that sec^(4)A-sec^(2)A=tan^(2)A+tan^(4)A .

Prove that 1+(tan^(2)A)/(1+sec A)=sec A

Prove that: tan(pi/4+A)+tan(pi/4-A) = 2sec2A