Home
Class 11
MATHS
The solution set of log2|4-5x|> 2 is a)...

The solution set of `log_2|4-5x|> 2` is a) `(8/5,+oo)` b) `(4/5,8/5)` c) `(*oo,0)uu(8/5,+oo)` d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of log_(2)|4-5x|>2 is a )((8)/(5),+oo) b) ((4)/(5),(8)/(5)) c) (*oo,0)uu((8)/(5),+oo) d) none of these

The solution set of (x + 3)/(x - 2) le 2 is a) (-oo, oo) b) (-oo, 2] uu [7, oo) c) (-oo, 2) uu [7, oo) d) [7, oo)

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) (2,4) (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) (2,4) (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) [2,4] (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

If log_(3)(x^(2)-6x+11)<=1, then the exhaustive range of values of x is: (-oo,2)uu(4,oo)(b)(2,4)(-oo,1)uu(1,3)uu(4,oo)(d) none of these

The solution set of the inequality (log)_(10)(x^2-16)lt=(log)_(10)(4x-11) is 4,oo) (b) (4,5) (c) ((11)/4,oo) (d) ((11)/4,5)

The solution set of the inequality (log)_(10)(x^2-16)lt=(log)_(10)(4x-11) is 4,oo) (b) (4,5) (c) ((11)/4,oo) (d) ((11)/4,5)

The solution set of the inequality (log)_(10)(x^2-16)lt=(log)_(10)(4x-11) is 4,oo) (b) (4,5) (c) ((11)/4,oo) (d) ((11)/4,5)

The solution set of the inequality max {1-x^2,|x-1|}<1 is (-oo,0)uu(1,oo) (b) (-oo,0)uu(2,oo) (0,2) (d) (0,2)