Home
Class 11
MATHS
The solution of 1/(2a+b+2x)=1/(2a)+1/b+1...

The solution of `1/(2a+b+2x)=1/(2a)+1/b+1/(2x)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for: 1/(2a+b+2x)=1/(2a)+1/b+1/(2x)

Solve for: (1)/(2a+b+2x)=(1)/(2a)+(1)/(b)+(1)/(2x)

The solution of "Sin"^(-1)(2a)/(1+a^(2))-"Cos"^(-1)(1-b^(2))/(1+b^(2))="Tan"^(-1)(2x)/(1-x^(2)) is

Let a and b be the number of solutions and sum of solutions of (2x)/(x-1)-|x|=(x^2)/(|x-1|) respectively, then a=3 (b) b=1 (c) b=2 (d) a=2

Let a and b be the number of solutions and sum of solutions of (2x)/(x-1)-|x|=(x^(2))/(|x-1|) respectively,then a=3( b )b=1b=2(d)a=2

If a,b respectively be the number of solutions and sum of solutions of |(2x)/(x-1)|-|x| = (x^(2))/(|x-1|) , then

If a,b respectively be the number of solutions and sum of solutions of |(2x)/(x-1)|-|x| = (x^(2))/(|x-1|) , then

If |a|lt1| b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) is

If |a|lt1|b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) is