Home
Class 11
PHYSICS
A vector is given by vec (A) = 3 hat(i) ...

A vector is given by `vec (A) = 3 hat(i) + 4 hat(j) + 5 hat(k)`. Find the magnitude of `vec(A)` , unit vector along `vec(A)` and angles made by `vec(A)` with coordinate axes.

Promotional Banner

Similar Questions

Explore conceptually related problems

vec(A) and vec(B) are two vectors given by vec(A) = 2hat(i) + 3hat(j) and vec(B)= hat(i) + hat(j) . The magnitude of the component of vec(A) along vec(B) is

The vector component of vector vec(A) = 3 hat(i) + 4 hat(j) + 5 hat(k) along vector vec(B) = hat(i) + hat(j) + hat(k) is

vec(A) and vec(B) are two vectors given by vec(A)=2hat(i)+3hat(j) and vec(B)=hat(i)+hat(j). The magnitude of the component of vec(A) along vec(B) is

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a