Home
Class 11
MATHS
" The value of "lim(n rarr oo)cos((x)/(2...

" The value of "lim_(n rarr oo)cos((x)/(2))cos((x)/(4))cos((x)/(8))dots cos((x)/(2^(n)))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo) cos ((x)/(2)) cos ((x)/(4))cos ((x)/(8))…...cos((x)/(2^(n))) is

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

Lim_(x to 0){"cos"((x)/(2))cos((x)/(4))cos((x)/(8))....cos((x)/(2^(n)))}=

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

lim_(x rarr oo)((cos x)/x)

The value of lim_(x rarr oo)(x^(2))(1-cos((1)/(x))) is

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))